
Mechatronic Control Systems:

An Implementation Perspective

Karl-Erik Årzén & Anton Cervin
Dept of Automatic Control

Lund University
1

Outline

• Mechatronic Control Problems

• Segway Example

• Discrete Control Systems

• Continuous Control Systems

– Design Methodologies
– Aliasing
– Arithmetics
– Realization
– Computation Delay
– Example: PID Controller
– Implementation Paradigms

2

More Information

The material presented in these two lectures is primarily based
on the following courses:

• Reglerteknik AK (Basic Course in Automatic Control)

• Computer-Controlled Systems (Digital Reglering)

• Real-Time Systems

• Nonlinear Control and Servo Systems

3

More Information cont.

Strong Relations to other courses:

• Automation

• Embedded Systems

• Real-Time Programming

• Electronics (Elektronik) -analog computations, OP-
amplifiers

• Design of Digital Circuits (Digitalteknik) -finite state
machines, boolean functions

• Datorteknik -arithmetics

• Numerical Analysis

• Computational Mechatronics

• and many more ...
4

A Typical Control Problem

Raw material buffer tank with heating (non-mechatronic, but
still)

T

Q

L
1

L0

V

Goals:

• Temperature control: PI-controller

• Level control: open V when level below L0, keep the valve
open until level above L1

• Sensor fault detection: Generate alarm whenever L1 is true and
L0 is false

5

Characteristics

• Concurrent activities.

• Timing requirements – more or less hard.

• Discrete (binary) and analog signals.

• Continuous (time-driven) control and Discrete (event-
driven) control

• Discrete control consists of both sequence control logic
(state-machine oriented) and combinatorial logic (inter-
locks) (Alarm = L1 AND NOT L0)

The above characteristics hold for almost all control applica-
tions, whether mechatronic or not.

6

Mechatronic System Characteristics

Mechatronic systems are often embedded systems.

The "computing device" is an embedded part of a mechatronic
device/equipment.

Constraints on cost and size generate constraints on execution
time, "execution space" (memory, word-length, chip-size),
power usage, bandwidth, fault-tolerance,

"Resource-Constrained Control"

7

NoE on Embedded Systems Design – ECS Graduate Course
Valencia, Spain. April 5-8, 2005

©Lund University 2005

Mini-Segway

An Example of a Mechatronic Embedded
Control System

NoE on Embedded Systems Design – ECS Graduate Course
Valencia, Spain. April 5-8, 2005

©Lund University 2005

Inspiration
NoE on Embedded Systems Design – ECS Graduate Course

Valencia, Spain. April 5-8, 2005

©Lund University 2005

Sensors & Actuators
• Wheel encoders
• Accelerometer & Gyro

– used together to measure the pendulum angle
– accelerometer:

• accurate static measurement of angle
• does not give any useful information during acceleration of the Segway

– gyro:
• accurate dynamic measurement of angle velocity
• integration to get angle
• integrated value drifts over time due to measurement errors

– complimentary filter technique
• block high-frequency parts of accelerometer signal
• block low-frequency parts of the gyro signal

• Two DC motors

NoE on Embedded Systems Design – ECS Graduate Course
Valencia, Spain. April 5-8, 2005

©Lund University 2005

Processor
• ATMEL AVR Mega16

– 16 kByte program memory
– 2 kByte RAM
– No hardware support for floating point

• software emulation
– AD converters
– Digital outputs
– RS 232 communication
– No RTOS, no threads/tasks – only interrupts and timers

• definutely no Java
– Programmed in C with gcc compiler

NoE on Embedded Systems Design – ECS Graduate Course
Valencia, Spain. April 5-8, 2005

©Lund University 2005

IO interface

• Motors
– Digital output
– Pulse width modulation (PWM)

Low pass
filter Motor

NoE on Embedded Systems Design – ECS Graduate Course
Valencia, Spain. April 5-8, 2005

©Lund University 2005

IO Interface
• Wheel encoders

– optical sensor
– bit counter that is incremented or decremented
– interrupt generated when an 8-bit counter overflows

• wheel position and velocity calculated

• Gyro
– AD converter
– 10 bits

• Accelerometer
– sensor generates PWM signals
– 16 bit counter to measure time intervals

NoE on Embedded Systems Design – ECS Graduate Course
Valencia, Spain. April 5-8, 2005

©Lund University 2005

Software Structure
• Event driven
• Interrupts:

– Wheel encoders
– AD converter
– Timer interrupt for controller
– Interrupts for sending and receiving over RS232

(UART)

NoE on Embedded Systems Design – ECS Graduate Course
Valencia, Spain. April 5-8, 2005

©Lund University 2005

Control Design
• State feedback controller

– states: pendulum angle, angle velocity, wheel
position, wheel velocity

– velocities approximated using differences
• Design process:

– model in continuous time (physics + experiment)
– sampled to a discrete-time model (h = 16.4 ms)
– design using LQ and poleplacement

Implementation Technologies

• Analog Computations

– Pure mechanics
– Pneumatics
– Discrete Analog Electronics
– Analog ASICs

• Digital Computations

– Electro-mechanical relay systems
– Discrete Digital Electronics
– Digital ASICs
– PLA (Programmable Logic Arrays)
– FPGA (Field-Programmable Gate Arrays)
– Digital signal processors (DSP)
– General Computers (micro-controllers, micro-processors, ...)

8

Outline

• Mechatronic Control Problem

• Segway Example

• Discrete Control Systems

• Continuous Control Systems

– Analog Implementation
– Digital Implementation

∗ Design Methodologies

∗ Aliasing

∗ Arithmetics

∗ Realization

∗ Computation Delay

∗ Example: PID Controller

∗ Implementation Paradigms

9

Basic Elements

• Boolean (binary) signals – 0, 1,
f alse, true, a, ā

• expressions
a

a or b (a + b)

a and b (a b)

Boolean algebra

Truth values
Truth value tables

• events
a

^a

a 10

Logic Nets

• Combinatorial nets -boolean functions

– outputs = f(inputs)
– interlocks, "förreglingar"

• Sequence nets

– newstate = f(state,inputs)
– outputs = g(state,inputs)
– state machines (automata)

Asynchronous nets or synchronous (clocked) nets

Logic net

Inputs Outputs

New stateState

Delay

Course on Design of Digital Circuits
11

Grafcet

Extended state machine formalism for implementation of
sequence control

Industrial name: Sequential Function Charts (SFC)

Defined in France in 1977 as a formal specification and
realization method for logical controllers

Standardized in IEC 848. Part of IEC 1131-3

12

Editors and compilers.

13

Statecharts

D. Harel, 1987

Statecharts =

• state-transition graphs

• hierarchy

• concurrency

• history

The state-machine formalism used within UML (Unified Model-
ing Language).

Several different tools available.

14

Statechart Syntax

D

A

C

B

c (P)

a / e

b

d

XOR Superstate

Input event
Output event

State

Condition
"guard"

15

Statecharts Concurrency

AND Superstates:

Y

A D

B

C

E

G

F
a b (in G) c

d

a

g

Y is the orthogonal product of A and D

When in state (B,F) and event a occurs, the system transfers
simultaneously to (C,G).

16

Implementation alternatives

Several possibilities:

• discrete digital electronics

• digital ASICs

• PLA (AND-gates and OR-gates, minimal conjunctive form)

• FPGA (more general gates)

• Processors

– single-bit CPUs (simple PLCs (Programmable Logic
Controllers))

– micro controllers/processors

What to choose depends on cost, size, requirements on
flexibility, ...

17

Outline

• Mechatronic Control Problem

• Segway Example

• Discrete Control Systems

• Continuous Control Systems

– Analog Implementation
– Digital Implementation

∗ Design Methodologies

∗ Aliasing

∗ Arithmetics

∗ Realization

∗ Computation Delay

∗ Example: PID Controller

∗ Implementation Paradigms

18

Continuus Control Systems

Controller

y: measured
 variable

r: reference
 signal u: control

 signal

General Controller Form:

dx

dt
= f (x, y, r)

u = �(x, y, r)

Linear case:

f (x, y, r) = Fx + Gy+ Hr

�(x, y, r) = Cx + Dy+ Er

19

Implementation

f(x,y,r) g(x,y,r) uxr,y dx/dt ∫

Integration + function generation

Linear case:

• summation + accumulation

• multiplication with coefficient

• scalar product

Non-linear elements:

• selector logic (min/max, comparison)

• general non-linear elements for reference signal generation,
gain-schedules, adaptation (can often be implemented as
lookup-tables)

• ...
20

Implementation with Analog Electronics

Using operational amplifiers and passive elements (resistors,
capacitors) it is straightforward to implement summation and
integration

+

−

v

v

v

R

R

R

2

1

2

1

+

−

v

v

v

R

R2

1

2

1
C

Summator Integrator

Summator:

v = −(
R

R1
v1 +

R

R2
v2)

Integrator:

v = −(
1

R1C

∫ t

0

v1(τ)dτ +
1

R2C

∫ t

0

v2(τ)dτ)
21

Scaling

Physical variables (positions, forces, temperatures, ...) are
represented as electrical signals (voltages) that have some
specified limit (e.g. ±10V)

It is important to scale the variables appropriately to avoid
overloads and saturations.

Within the permissible operating range it is desirable to have
each variable assume as large absolute values as possible to
minimize errors due to offset voltages, noise etc.

22

Controller Synthesis
Process Model

G(s) ẋ = Ax+Bu
y = Cx+Du

Control Design in Continuous-Time
• Loop shaping
• Pole placement
• PID
• ….

Discretize the Controller
• Euler
• Tustin
• ….

Difference Equation

Software algorithm

Discretize the process
• e.g. ZOH Sampling

x(k + 1) = x(k) + u(k)

y(k) = Cx(k) +Du(k)

Control Design in Discrete-Time
• Pole placement
• LQG
• ….

Discrete-time Implementation

Digital controllers can be designed in two different ways:

• Discrete time design

– sampled (digital) control theory
– shift operators (z-transforms)
– u(k) = k1y(k) + k2u(k− 1)

– h a design parameter

• Continuous time design + discretization

– Laplace transform
– U(s) = Gc(s)E(s)

– approximate the continuous design
– fast, fixed sampling

23

Sampled Control Theory

Algorithm Process

Clock

A-D D-A

Computer

y(t)u(t)y(tk){ } u(t k){ }

The basic idea: Look at the sampling instances only!

24

Sampled Control Theory

Process

u t()

)

uk

y t(u t()

yk

SamplerHold

Computer
uk

yk

tt

t

y t()

t

D-A A-D

• System theory analogous to continuous time linear sys-
tems

• Better performance can be achieved

• Problems with inter-sample behavior
25

Sampling of Systems

Look at the system from the point of view of the computer

D-A

Clock

System A-D
{u(tk)} y (tk){ }y(t)u(t)

Zero-order-hold sampling of a system

• Let the inputs be piecewise constant

• Look at the sampling points only

• Use linearity and calculate step responses when solving
the system equation

26

Sampling a continuous-time system

System description

dx

dt
= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Solve the system equation

x(t) = eA(t−tk)x(tk) +

∫ t

tk

eA(t−s
′)Bu(s′) ds′

= eA(t−tk)x(tk) +

∫ t

tk

eA(t−s
′) ds′ Bu(tk) (u const.)

= eA(t−tk)x(tk) +

∫ t−tk

0

eAs ds Bu(tk) (variable change)

= Φ(t, tk)x(tk) + Γ(t, tk)u(tk)

27

The General Case

x(tk+1) = Φ(tk+1, tk)x(tk) + Γ(tk+1, tk)u(tk)

y(tk) = Cx(tk) + Du(tk)

where

Φ(tk+1, tk) = eA(tk+1−tk)

Γ(tk+1, tk) =

∫ tk+1−tk

0

eAsds B

28

Periodic sampling

Assume periodic sampling, i.e. tk = k ⋅ h, then

x(kh+ h) = Φx(kh) + Γu(kh)

y(kh) = Cx(kh) + Du(kh)

where

Φ = eAh

Γ =

∫ h

0

eAs ds B

NOTE: Time-invariant linear system!

29

Stability region

In continuous time the stability region is the complex left half
plane, i.e„ the system is stable if all the poles are in the left
half plane.

In discrete time the stability region is the unit circle.

1

1

30

Discretization of Continuous Time Design

Basic ideas: Reuse the design

Algorithm

Clock

u kh(){ } y kh(){ }

H(z) ≈ G (s)

y(t)u(t)
A-D D-A

G(s) is designed based on analog techniques

Want to get:

• A/D + Algorithm + D/A � G(s)

Methods:

• Approximate s, i.e., G(s) � H(z)

• Other methods 31

Approximation Methods

Forward Difference (Euler forward method)

dx(t)

dt
�
x(t+ h) − x(t)

h

s =
z− 1

h

Backward Difference (Euler backward method)

dx(t)

dt
�
x(t) − x(t− h)

h

s =
z− 1

zh

32

Approximation Methods, cont

Tustin (trapeziodal, bilinear):

ẋ(t+ h) + ẋ(t)

2
�
x(t+ h) − x(t)

h

s =
2

h

z− 1

z+ 1

33

Stability of Approximations

How is the continuous-time stability region (left half plane)
mapped?

Forward differences Backward differences Tustin

34

Basic Operations

Integration � Summation + accumulation

Derivation � Difference approximation (in the simplest case)

Selector logic and nonlinearities straightforward

Scalar products main operation in controllers and filters

DSPs optimized for this.

35

Issues: Sampling and Aliasing

ProcessA/D D/AAlgorithm

Computer u
y

AD-converter acts as sampler

A/D

DA-converter acts as a hold device

Normally, zero-order-hold is used � piecewise constant control
signals

36

Aliasing

0 5 10
−1

0

1

Time

ω N = ω s/2 = Nyquist frequency, (ω s = sampling freq.)

Frequencies above the Nyquist frequency are folded and
appear as low-frequency signals.

The fundamental alias frequency for a frequency f1 > fN is
given by

f = �(f1 + fN) mod (fs) − fN �

Above: f1 = 0.9, fs = 1, fN = 0.5, f = 0.1

37

Prefilters

Anti-aliasing filter

Analog low-pass filter that eliminates all frequencies above the
Nyquist frequency

• Analog filter

– 2-6th order Bessel or Butterworth
– Difficulties with changing h (sampling interval)

• Digital Filter

– Fixed, fast sampling with fixed analog filter
– Control algorithm at a slower rate together with digital

LP-filter
– Easy to change sampling interval

The filter may have to be included in the design.
38

Choice of sampling interval

Nyquist’s sampling theorem:

“We must sample at least twice as fast as the highest
frequency we are interested in”

• What frequencies are we interested in?

39

Typical loop transfer function L(iω) = P(iω)C(iω):

10
−1

10
0

10
−2

10
−1

10
0

10
1

F
ör

st
är

kn
in

g

10
−1

10
0

−250

−200

−150

−100

−50

F
as

Frekvens [rad/s]

ω c

ϕm

• ω c = cross-over frequency, ϕm = phase margin

• We should have ω s ≫ 2ω c
40

Sampling interval rule of thumb

A sample-and-hold (S&H) circuit can be approximated by a
delay of h/2.

GS&H(s) � e
−sh/2

This will decrease the phase margin by

argGS&H(iω c) = arg e
−iω ch/2 = −ω ch/2

Assume we can accept a phase loss between 5○ and 15○.
Then

0.15 < ω ch < 0.5

This corresponds to a Nyquist frequency about 6 to 20 times
larger than the crossover frequency

41

Example: control of inverted pendulum

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,

ω ch = 0.28

h = 0.3,

ω ch = 0.78

h = 0.5,

ω ch = 1.12

• Large ω ch may seem OK, but beware!

– Digital design assuming perfect model
– Controller perfectly synchronized with initial disturbance

42

Pendulum with non-synchronized disturbance

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,

ω ch = 0.28

h = 0.3,

ω ch = 0.78

h = 0.5,

ω ch = 1.12

43

Accounting for the anti-aliasing filter

Assume we also have a second-order Butterworth anti-aliasing
filter with a gain of 0.1 at the Nyquist frequency. The filter gives
an additional phase margin loss of � 1.4ω ch.

Again assume we can accept a phase loss of 5○ to 15○. Then

0.05 < ω ch < 0.14

This corresponds to a Nyquist frequency about 23 to 70 times
larger than the crossover frequency

44

Outline

• Mechatronic Control Problem

• Segway Example

• Discrete Control Systems

• Continuous Control Systems

– Analog Implementation
– Digital Implementation

∗ Design Methodologies

∗ Aliasing

∗ Arithmetics

∗ Realization

∗ Computation Delay

∗ Example: PID Controller

∗ Implementation Paradigms

45

Issues: Computer Arithmetics

Control analysis and design assumes floating point arithmetics
(i.e. high range and resolution)

Hardware-supported on modern high-end processors (e.g.,
floating point ALUs (Arithmetic-Logic Units))

Representation:
± f 	 2±e

• f : mantissa, significant, fraction

• 2: radix or base

• e: exponent

46

IEEE 754 Standard

Used by almost all floating-point processors (except certain
DSPs)

Single precision (Java/C float):

• 32-bit word divided into 1 sign bit, 8-bit exponent, and 23-
bit mantissa

• Range: 2−126 − 2128

Double precision format (Java/C double):

• 64-bit word divided into 1 sign bit, 11-bit exponent, and
52-bit mantissa.

• Range: 2−1022 − 21024

Supports infinity and NaN

47

Floating-point emulation

Emulate floating-point arithmetics in software

Approaches:

• compiler supported

• manually

– e.g., floating point variables represented as C structs
– floating point operations in the form of a library

Problems:

• Code size becomes too large

• Slows down execution speed

• Non-trivial

48

Fixed Point Arithmetics

Use the binary word directly for representing numbers

MSB LSB

........ b b b b bbb 01234ws−1 ws−2

radix point

• MSB -Most significant bit

• LSB -Least significant bit

• ws -word-size

Unsigned versus signed

49

Fixed Point Arithmetics

Integer arithmetics:

• radix point to right of LSB

• 16 bits signed integer gives range −32768 ≤ x̂ ≤ 32767
((−215) − (215 − 1))

Fractional arithmetics:

• radix point to right of MSB (signed)

• 0.10011001

Generalized fixed point arithmetics:

• application-defined radix point

• 1101.0110

• Scaling: x = x̂/24 – shifting the radix point
50

Fixed Point Calculations

Fixed point multiplication involves quantization

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

x

y

x ⋅ y

z

	

=

Fixed-point addition is error-free

Quantization (truncation or rounding)

• modeled as “noise”

Overflow (wrap-around or saturation)
51

Example: Scalar products

Many controllers and filters involve calculations of scalar
products, e.g.,
u = −Lx = −[l1l2l3][x1x2x3]

T = −l1x1 − l2x2 − l3x3

Consider the vectors

a = (100 1 100)

b = (100 1 − 100)

The true scalar product is 1

When computed in fixed point representation using a precision
corresponding to three decimal places, the result will be 0
(100	 100+ 1	 1 is rounded to 10000)

The result depends on the order or the operations.

To avoid this it is common to use higher resolution in the
accumulator and round to a smaller resolution afterwards.

52

Fixed-Point Arithmetics Problems

• Quantization
Fixed-point values are rounded or truncated.

– Coefficient Quantization: Poles and zeros end up some-
where else

– Signal (state) Quantization:

∗ Noise is added in each operation

∗ Quantization may cause signal bias

∗ Quantization may cause limit cycles. Either in the
output only (LSB) or in the entire system through
feedback.

• Overflow
Adding/Multiplying two sufficiently large numbers can produce a
result that does not fit into the representation.

– Scaling important both of variables and of coefficients.
– Overflow characteristics. Saturation or wrap-around?

Hardware supported overflow detection or not.
53

Example: Coefficient Quantization

An example controller

C(z) =
z4 − 2.13z3 + 2.351z2 − 1.493z+ 0.5776

z4 − 3.2z3 + 3.997z2 − 2.301z+ 0.5184

8-bit fixed point coefficients with x = x̂/24, so

x ∈
[
−8.0 . . . 7.9375

]

x1 1 1

4 fractional bits

4 integer bits

24

54

Example: Coefficient Quantization

• Original:

C(z) =
z4 − 2.13z3 + 2.351z2 − 1.493z+ 0.576

z4 − 3.2z3 + 3.997z2 − 2.301z+ 0.5184

• Quantized:

C(z) =
z4 − 2.125z3 + 2.375z2 − 1.5z+ 0.5625

z4 − 3.188z3 + 4z2 − 2.312z+ 0.5

55

Example

Pole−Zero Map

Real Axis

Im
ag

 A
xi

s

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

56

Issues: Realization of Digital Controllers

A digital controller

u(k) = H(q−1)y(k) =
b0 + b1q

−1 + ⋅ ⋅ ⋅+ bmq
−m

1+ a1q−1 + a2q−2 + ⋅ ⋅ ⋅+ anq−n
y(k)

can be realized in a number of different ways with equivalent
input-output behavior (different choice of state variables)

Issues:

• number of storage elements (memory)

• number of non-zero non-one coefficients

• coefficient range

• sensitivity towards coefficient quantization

• sensitivity towards state quantization

– order of computations matters 57

Direct and Companion Forms

u(k) =
m∑
i=0

biu(k− i) −
n∑
i=1

aiy(k− i)

Not minimal (n+m states)

Companion forms (e.g., observable canonical form or controllable
canonical form):

x(k+ 1) =

8
>>>>>>>>>>>>>>>>>>>>:

−a1 1 0 ⋅ ⋅ ⋅ 0

−a2 0 1 ⋅ ⋅ ⋅ 0

...
...

...
. . .

...

−an−1 0 0 ⋅ ⋅ ⋅ 1

−an 0 0 ⋅ ⋅ ⋅ 0

9
>>>>>>>>>>>>>>>>>>>>;

x(k) +

8
>>>>>>>>>>>>>>>>>>>>:

b1

...

bm−1

bm

0

9
>>>>>>>>>>>>>>>>>>>>;

y(k)

u(k) =
8
: 1 0 ⋅ ⋅ ⋅ 0

9
; x(k)

Minimal

Coefficients in the characteristic polynomial are the coefficients in
the realization. Sensitive to computational errors if the systems are
of high order and if the poles or zeros are close to each other.

58

Example

A linear system can be rewritten in many ways:

C(z) =
z4 − 2.13z3 + 2.351z2 − 1.493z+ 0.5776

z4 − 3.2z3 + 3.997z2 − 2.301z+ 0.5184

=
(z2 − 1.635z+ 0.9025
z2 − 1.712z+ 0.81

)(z2 − 0.4944z+ 0.64
z2 − 1.488z+ 0.64

)

= 1+
−5.396z+ 6.302

z2 − 1.712z+ 0.81
+
6.466z− 4.907

z2 − 1.488z+ 0.64

+

Direct form Cascade form

Parellell form

C(z)

C1(z)

C1(z)

C2(z)

C2(z)

59

Cascade form

Pole−Zero Map

Real Axis

Im
ag

 A
xi

s C(z)
C(z) cascade form N=8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

60

Well-conditioned realizations

Parallel (diagonal/Jordan) and cascade (series) forms have
normally the best numerical properties.

If poles (zeroes) are far apart, direct form is usable.

Bode Diagram

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

dB
)

−20

0

20

40

C(z)
C(z) direct form N=8

10
3

10
4

10
5

−225

−180

−135

−90

−45

0

Direct form

Bode Diagram

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

dB
)

−20

−10

0

10

20

30

C(z)
C(z) cascade form N=8

10
3

10
4

10
5

−225

−180

−135

−90

−45

0

Cascade form

61

State saturation

For fixed point arithmetics, there is a balance:

• Too high gain in some part of system will cause state to
overflow.

• Too low gain in some part of system will cause a lot of
quantization errors.

Your digital system should have gain γ � 1.

What is γ ?

The gain of the system for the kind of input signal we expect 62

State saturation

Spread the gain:

Filter 1

Filter 1

Filter 1

Filter 2

Filter 2

Filter 2

Filter 3

Filter 3

Filter 3

Bad accuracy

Overflow

Good

γ = 0.2

γ = 0.2

γ = 1γ = 1

γ = 1

γ = 1

γ = 1

γ = 5

γ = 5

63

State saturation

How to pair and order poles and zeros?

Jackson’s rules (1970):

• Pair the pole closest to the unit circle with its closest zero.
Repeat until all poles and zeros are taken.

• Order the filters in increasing or decreasing order based
on the poles closeness to the unit circle.

This will push down high internal resonance peaks.

64

Summing up

Problems and solutions:

• Coefficient quantization:

– Avoid direct forms and companion forms
– Always split systems into first-and second-order

systems (cascade, parallel form)

• State quantization:

– Can be modeled as noise sources after multiplicators
– Use double-size accumulator

• State saturation:

– Have equal gains (γ � 1) for all systems
– Use Jackson’s rules for pole-zero sorting

65

Issues: Computational Delay

Most controller are based on periodic sampling.

Algorithm

Clock

Basic problem: u(k) = f (y(k), .)

Computation time not accounted for.

66

Computational Delay

Problem: u(k) cannot be generated instantaneously at time k
when y(k) is sampled

Delay (computational delay or input-ouput latency) due to
computation time (and communication delay)

LOOP
 wait for clock interrupt;
 read analog input;
 perform calculations;
 set analog output;
END;

Control delay

y

Time

Time

u

y(t)
k

k+1y(t)

k+2y(t)

k+3y(t)

k

k+1
k+2

k+3

u(t)
u(t)

u(t)
u(t)

Control
delay

67

Four Approaches

1. Design the controller to be robust against variations in the
computational delay

– complicated

2. Ignore the computational delay

– often justified, since it is small compared to h
– write the code so that the delay is minimized, i.e., minimize

the operations performed between AD and DA
– divide the code into two parts: CalculateOutput and Updat-

eStates

3. Compensate for the computational delay

– include the computational delay in model and the design
– sampling of systems with time delays
– write the code so that the delay is constant

68

4. Include an delay of one sample in the controller

– do not send out the control signal until the start of next
sample

– computational delay = h
– easier way to compensate (multiple of the sampling

interval)

y

y(tk−1)

y(tk)

y(tk+1)

Time

u

t k−1 t k tk+1

u(tk− 1)

u(t k)

Time

C
on

tr
ol

 V
ar

ia
bl

e
M

ea
su

re
d

V
ar

ia
bl

e

Case B

y(tk−1)

y(tk)

y(t k+1)y

Timet k−1 t k t k+1

u(tk)

u(tk+ 1)
u

Time

C
on

tr
ol

 V
ar

ia
bl

e
M

ea
su

re
d

V
ar

ia
bl

e

Case A

Computa-
tional
lag τ = h

Computa-
tional
lag τ

69

Minimize Control Delays

General Controller representation:

x(k+ 1) = Fx(k) + Gy(k) + Gryre f (k)

u(k) = Cx(k) + Dy(k) + Dryre f (k)

As little as possible between AdIn and DaOut

PROCEDURE Regulate;

BEGIN

AdIn(y);

(* CalculateOutput *)

u := u1 + D*y + Dr*yref;

DaOut(u);

(* UpdateStates *)

x := F*x + G*y + Gr*yref;

u1 := C*x;

END Regulate;

70

Sampling interval and delay rule of thumb

Assume that the delay is τ . This gives an additional phase
margin loss of −ω cτ . Extending our first rule of thumb we get

0.15 < ω c(h+ 2τ) < 0.5

• If the delay is too large, we must decrease the speed of
the controlled system (i.e. the cross-over frequency ω c)

– The delay imposes a fundamental performance limita-
tion

71

Other sources of time delays

• Deadtime in the process

– deadtime after the actuator
– deadtime before the sensor

• Communication delays

– between sensor and controller
– between controller and actuator

Actuator
node Process

Sensor
node

Controller
node

Network

h

τ kscτ kca

u(t) y(t)

72

Pendulum controller with time delay

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−2

0

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,

τ = 0.05

h = 0.1,

τ = 0.1

h = 0.1,

τ = 0.2

• No delay compensation

73

Delay margin

Suppose the loop transfer function without delay has

• cross-over frequency ω c

• phase margin ϕm

Phase margin loss due to delay:

arg e−iω cτ = −ω cτ

Closed-loop system stable if

ω cτ < ϕm � τ <
ϕm
ω c

τm =
ϕm
ω c

is called the delay margin

74

Why is delay bad?

Bode Diagrams

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

−270

−225

−180

−135

−40

−20

0

20

Zero delay

One sample delay

Cross−over frequency

Phase margin

75

Example: delay margin for pendulum controller

Bode Diagram

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

ab
s)

10
0

Gm = 3.0069 (at 7.0717 rad/sec), Pm = 32.199 deg (at 2.8208 rad/sec)

10
0

10
1

−270

−180

−90

ϕm = 32
○, ω c = 2.8 rad/s � τm =

32π
180⋅2.8

= 0.2

76

Delay Compensation

If the delay is constant and known, it is possible to compensate
for it in the design.

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

dB
)

−40

−20

0

20
One sample delay + compensation

10
0

10
1

10
2

−270

−225

−180

−135

New phase margin

New cross−over frequency

Continuous-time: Smith predictor or lead compensation

Discrete-time: Include the delay in the process model

77

Delay compensation using Smith predictor

Idea: control against simulated model without delay:

Controller Process

Model

Model
w/o delay

r u y

y1

y2

Σ

Σ

−

−

• Requires accurate and stable model

78

The Smith Predictor

Controller Process

Model

Model without
delay

y

+

+

-
y1

r u

y2

+

With a perfect model the controller does not see any delay

The control performance the same as without any delay (with
the exception that the output will be delayed)

79

PI versus Smith
Mätsignal

Styrsignal

Börvärde

However, a delay compensating controller can never undo the
delay

80

The Smith Predictor

Assume that the process is given by P(s) = P0(s)e−sL and that
we have a perfect model P̂(s) = P(s).

This gives the transfer function

Y(s) =
P0C

1+ P0C
e−sLR(s)

The same as if without any delay + a pure delay

Ideally the controller can be designed for without delay

In practice due to model errors and disturbances the delay
must be taken into account in the control design (a more
conservative design)

81

Why is jitter bad?

The effects of sampling jitter and input-output latency jitter are
quite hard to analyze.

If one can measure the actual jitter every sample, it is possible
to design controllers that, at least partly, can compensate for
the jitter.

For sampling jitter, this corresponds to re-sample the controller
in every sample.

82

Reasons for delays and jitter

• Computation time (possibly varying)

• Preemption (blocking) by other activities that are more
important (have higher priority)

• Blocking due to access of shared resources

• Temporally non-deterministic implementation platform
(hardware, OS)

• Communication delays

83

An Example: PID Control

Textbook Algorithm:

u(t) = K (e(t) + 1
TI

t∫
e(τ)dτ + TD

de(t)
dt
)

U(s) = K (E(s) + 1
sTI
E(s) + TDsE(s))

= P + I + D

84

A better algorithm

U(s) = K (β yr − y+
1

sTI
E(s) −

TDs

1+ sTD/N
Y(s))

Modifications:

• Setpoint weighting (β) in the proportional term improves
set-point response

• Limitation of the derivative gain (low-pass filter) to avoid
derivation of measurement noise

• Derivative action only on y to avoid bumps for step
changes in the reference signal

85

Control Signal Limitations

All actuators saturate.

Problems for controllers with integration.

When the control signal saturates the integral part will continue
to grow – integrator (reset) windup.

When the control signal saturates the integral part will integrate
up to a very large value. This may cause large overshoots.

0 10 20
0

0.5

1

1.5

2 Output y and yref

−0.2

0

0.2

Control variable u

86

Tracking

• when the control signal saturates, the integral is recom-
puted so that its new value gives a control signal at the
saturation limit

• to avoid resetting the integral due to, e.g., measurement
noise, the re-computation is done dynamically, i.e., through
a LP-filter with a time constant Tr.

87

Tracking

Σ

Actuator

–y

v u

– +

K Σ

Σ

 e = r − y

1
Tt

K
Ti

 KTds

1
s

 e s

Actuator

– +
Σ

Σ

Σ

 e = r − y

KTds

K

1
s

1
Tt

K
Ti

–y

 es

Actuator
model

88

Tracking

0 10 20 30
0

0.5

1

0 10 20 30
−0.05

0.05

0.15

0 10 20 30
−0.8

−0.4

0

89

Discretization

P-part:

uP(k) = K (β ysp(k) − y(k))

90

Discretization

I-part:

I(t) =
K

TI

t∫

0

e(τ)dτ

dI

dt
=
K

TI
e

• Forward difference

I(tk+1) − I(tk)

h
=
K

TI
e(tk)

I(k+1) := I(k) + (K*h/Ti)*e(k)

The I-part can be precalculated in UpdateStates

• Backward difference

The I-part cannot be precalculated, i(k) = f(e(k))

• Others
91

Discretization

D-part (assume γ = 0):

D = K
sTD

1+ sTD/N
(−Y(s))

TD

N

dD

dt
+ D = −KTD

dy

dt

• Forward difference (unstable for small TD)

• Backward difference

TD

N

D(tk) − D(tk−1)

h
+ D(tk)

= −KTD
y(tk) − y(tk−1)

h

D(tk) =
TD

TD + Nh
D(tk−1)

−
KTDN

TD + Nh
(y(tk) − y(tk−1)) 92

Discretization

Tracking:

v := P + I + D;

u := sat(v,umax,umin);

I := I + (K*h/Ti)*e + (h/Tr)*(u - v);

93

PID code

PID-controller with anti-reset windup

y = yIn.get(); // A-D conversion

e = yref - y;

D = ad * D - bd * (y - yold);

v = K*(beta*yref - y) + I + D;

u = sat(v,umax,umin)}

uOut.put(u); // D-A conversion

I = I + (K*h/Ti)*e + (h/Tr)*(u - v);

yold = y

ad and bd are precalculated parameters given by the back-
ward difference approximation of the D-term.

Execution time for CalculateOutput can be minimized even
further.

94

Issues: Implementation Paradigms

Concurrent (parallel) activities.

A control system normally contains several more or less inde-
pendent periodic or aperiodic activities/tasks (e.g., controllers)

It is often natural to handle the different tasks independently
during design.

Temperature Loop Level Loop

while (true) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI−control;
 Output the heater signal;
 Wait for h seconds;
}

while (true) {
 Wait until level below L0;
 Open inlet valve;
 Wait unitil level above L1;
 Close inlet valve;
}

95

Paradigms

Parallel programming:

Design
Level

Execution
Level

Concurrent Tasks

CPU

CPU

CPU

Program

Program

Program

Multiprocessors, VLSI (ASIC), FPGA

96

Paradigms

Sequential programming:

Design
Level

Execution
Level

Manual interleaving

CPU

Cyclic Executive

Sequential Program

Small micro-controllers.
97

Interleaved temperature and
 level loops

while (true) {
 while (level above L0) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI−control;
 Output the heater signal;
 Wait for h seconds;
 }
 Open inlet valve;
 while (level below L1) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI−control;
 Output the heater signal;
 Wait for h seconds;
 }
 Close inlet valve;
}

Complex and non user-friendly code if programmed manually.

Automatic code generation from synchronous programming
languages

98

Paradigms

Concurrent programming:

Design
Level

Execution
Level

Concurrent Tasks

Concurrent Processes

CPU

The CPU is shared between the process (switches)

99

Real-Time Operating Systems or Real-time Programming
Language with run-time system:

• switches between processes/threads

– Real-Time Kernel

• timing primitives

• process communication

Lectures by Klas Nilsson.
100

Implementing Periodic Controller Tasks

Three Main Issues:

1. How do we achieve periodic execution?

2. When is the sampling performed?

3. When is the control signal sent out?

101

1. How do we achieve periodic execution?

Several options:

1. Using a static schedule (cyclic executive)?

• High temporal determinism but inflexible

• Does not require any sophisticated RTOS support

2. In interrupt handlers (interrupt service routines) associated
with timers (typically in small microcontrollers)

3. As self-scheduling threads in a RTOS/kernel using time
primitives such as sleep/delay/WaitTime (relative wait) or
sleepUntil/delayUntil/WaitUntil (absolute wait)

4. Using an RTOS/kernel with built-in support for periodic
tasks

• implement the tasks as simple procedures/methods
that are registered with the kernel

• not yet common in commercial RTOS
102

Implementing Self-Scheduling Periodic Tasks

Attempt 1:

LOOP

PeriodicActivity;

WaitTime(h);

END;

Does not work.

Period > h and time-varying.

The execution time of PeriodicActivity is not accounted for.

103

Implementing Self-Scheduling Periodic Tasks

Attempt 2:

LOOP

Start = CurrentTime();

PeriodicActivity;

Stop = CurrentTime();

C := Stop - Start;

WaitTime(h - C);

END;

Does not work. An interrupt causing suspension may occur
between the assignment and WaitTime.

In general, a WaitTime (Delay) primitive is not enough to
implement periodic processes correctly.

A WaitUntil (DelayUntil) primitive is needed.
104

Implementing Self-Scheduling Periodic Tasks

Attempt 4:

LOOP

t = CurrentTime();

PeriodicActivity;

t = t + h;

WaitUntil(t);

END;

Does not work. An interrupt may occur between the WaitUntil
and CurrentTime.

105

Implementing Self-Scheduling Periodic Tasks

Attempt 4:

t = CurrentTime();

LOOP

PeriodicActivity;

t = t + h;

WaitUntil(t);

END;

Will try to catch up if the actual execution time of PeriodicAc-
tivity occasionally becomes larger than the period (a too long
period is followed by a shorter one to make the average cor-
rect)

Reasonable for alarm clocks, but perhaps not for controllers.
106

Implementing Self-Scheduling Periodic Tasks

Attempt 5: Reset the base time in case of overruns. Accept a
too long sample and try to do it right afterwards.

Assumes the existence of a new WaitTime primitive that calls
CurrentTime only if an overrun has occurred.

t = CurrentTime();

LOOP

PeriodicActivity;

t = t + h;

NewWaitUntil(t); // Updates t in case of overrun

END;

107

2. When is the sampling performed?

Two options:

• At the beginning of the controller task

– gives rise to sampling jitter and, hence, sampling
interval jitter

– still quite common

• At the nominal task release instants

– using a dedicated high-priority sampling task or in the
clock interrupt handler

– somewhat more involved scheme
– minimizes the sampling jitter

108

3. When is the control signal sent out?

Three Options:

• At the end of the controller task

– creates a longer than necessary input-output latency

• As soon as it can be sent out

– minimizes the input-output latency
– controller task split up in two parts: CalculateOutput

and UpdateState

• At the next sampling instant

– minimizes the latency jitter
– gives a longer latency than necessary
– often gives worse performance, also if the constant

delay is compensated for
– delay compensation easy 109

